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Abstract

Cross-orientation suppression (COS) in striate cortex has been implicated in the efficient encoding of visual stimuli. We show
that release from COS facilitates the decoding of 3-D shape. In planar surfaces overlaid with textures, slanting the surface
can increase the visibility of the component parallel to the slant. Since this component provides the orientation flows that
signify 3-D shape, the enhancement of visibility facilitates 3-D slant perception. Contrast thresholds reveal that this
enhancement results from a decrease in COS when 3-D slant creates a frequency mismatch between texture components.
We show that coupling compressive nonlinearities in LGN neurons with expansive nonlinearities in cortical neurons can
model the frequency-specific component of suppression.
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Introduction

In the perspective image of a slanted textured surface, oriented

components of the texture that are aligned with the 3-D slant

converge to form orientation flows ([1,2,3]), while components

orthogonal to the slant increase in frequency (Figure 1a). On

casual observation, the horizontal component appears perceptu-

ally more salient than other components when a surface is slanted

(Figure 1a, top left and right) than it does when the surface is

parallel to the frontal plane (Figure 1a, top center). The increase in

saliency is more pronounced in complex texture patterns, e.g. the

octotropic plaid, which consists of eight gratings of the same

frequency, equally spaced in orientation (Figure 1a bottom). Since

these converging orientation flows play a critical role in conveying

the perceived 3-D slant and shape of the surface ([3,4,5,6]), an

increase in their saliency should enhance the 3-D perceived slant.

The goal of this work is to examine the neural mechanisms that

enhance the visibility of orientation flows.

Many surface textures contain components of roughly the same

frequencies at many different orientations, with most of the

frequencies in the higher frequency declining segment of the

human CSF ([7]). Slanting the surface increases the frequencies of

components not aligned with the slant ([8]), thus leading to a

reduction in visibility. If different oriented components were

processed independently by the visual system, the increase in

saliency of the components parallel to the slant could be due just to

the reduced visibility of the other components. However

independent processing of different orientations is not a feasible

premise.

The response of oriented neurons in cat and primate striate

cortex to a stimulus at a preferred orientation is suppressed by the

superposition of a second oriented stimulus, even at the null

orientation. Parallel to these results, psychophysical studies have

reported that the contrast threshold of an oriented stimulus is

increased in the presence of a superimposed orthogonal stimulus.

Physiologically measured cross-orientation suppression (COS) is

broadband for orientation and occurs over a wide range of spatial

frequencies ([9,10,11]). Psychophysically measured COS appears

to be broadband for orientation ([12]), but with mixed evidence

for frequency-selectivity ([13,14,15,16,17]). Thus it is possible that

psychophysically measured COS has components that are distinct

from the COS measured in V1 neurons.

In this study we identify the mechanism underlying the change

in salience of orientation flows. In the first experiment, we show

that the visibility of orientation flows increases as a function of

surface slant. In the second experiment, we show that the

increased salience results from the frequency-selectivity of COS

and not the frequency dependent visibility of the masking

components.

Methods

All research followed the tenets of the World Medical

Association Declaration of Helsinki and informed consent was

obtained from the subjects after explanation of the nature and

possible consequences of the study. The research was approved by

the Queens College Institutional Review Board.

1. Apparatus and Presentation
Stimuli were presented on a 220 Mitsubishi Diamond Pro 2070

flat screen CRT monitor with an 10246768 pixel screen running

at a refresh rate of 100 Hz via a Cambridge Research Systems

ViSaGe Visual Stimulus Generator controlled through a 3.2 GHz

Pentium 4 PC. Observers’ head positions were fixed with a
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chinrest situated 1 m from the stimulus monitor. All stimuli were

presented so that the center of each image was level with the

observer’s eye. Viewing was monocular in a dimly lit room, and

there was no feedback.

2. Stimuli and Procedure
Planar surfaces were patterned with horizontal-vertical (h–v)

and octotropic plaid patterns and projected in perspective. All

stimuli were presented such that the horizontal grating component

was interleaved with non-horizontal components in alternating

frames at 100 Hz. This technique enabled us to alter the contrast

of the horizontal component independently from the other

components. For the h–v plaid, the contrast of the vertical grating

was fixed at 50%, the highest possible for interleaved frames.

Similarly, the contrast of each of the non-horizontal gratings in the

octotropic plaid was fixed at the highest possible level, 7.1%. The

phases of the plaid pattern components were randomized on each

trial. Stimuli were presented in circular apertures spanning 6.5 deg

against a grey background at the mean luminance of 58 cd/m2.

Contrast thresholds of the horizontal component were deter-

mined using a 2IFC paradigm. Each session was preceded by a

grey screen with a central black fixation cross that remained

onscreen for 1 minute. The fixation cross remained onscreen for

the duration of the session. After the initial adaptation, a tone

signaled the start of the trials. Each of the two stimulus intervals in

each trial lasted 500 msec, separated by a 400 msec inter-stimulus

interval. Audible beeps of different frequencies signaled the

presentation of each of the two stimulus intervals. Test contrast

was varied in interleaved 3-down/1-up double-random staircases

to ascertain the 79% correct point ([18]). Each staircase completed

two reversals at 1.8% contrast steps, then eight reversals at 0.4%

contrast steps. Threshold was estimated as the average of the last

six reversals.

3. Experiment 1: Orientation Flow Visibility as a Function
of Surface Slant

Surfaces were patterned with 3 cpd h-v and octotropic plaids

(Figure 1a). For each of the two plaid types, observers completed

Figure 1. Suppression of the test grating as a function of surface slant. A. Planar surfaces at different slants patterned with horizontal-
vertical (h–v) (top) and octotropic (bottom) plaids. B. Top: Contrast thresholds for three observers for the horizontal component alone (filled circles),
with a vertical component (open triangles), and with seven non-horizontal components (filled squares) as a function of surface slant. The top axis of
each panel represents the frequency of the vertical component relative to the frequency of the test in the image. Bottom: Suppression factor as a
function of surface slant.
doi:10.1371/journal.pone.0008333.g001
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eight sessions which were grouped as follows. One baseline session

measured contrast thresholds for the horizontal grating alone in the

fronto-parallel orientation. Each of three other baseline sessions

measured contrast thresholds of the horizontal grating alone at left

and right slants of 25, 50, and 65 deg. In the other four sessions,

contrast thresholds were measured in the presence of the non-

horizontal components. Thus there were a total of 16 sessions per

observer. For each pattern type, the four baseline sessions were run

first in random order, then the remaining sessions were run in

random order. Each session took approximately 10–15 minutes.

4. Experiment 2: Frequency-Selectivity of
Cross-Orientation Suppression Mechanism

Fronto-parallel surfaces were patterned with an iso-frequency

h–v plaid (Figure 2a) or an h–v plaid consisting of a vertical grating

of half the frequency of the horizontal grating (Figure 2c). The

same surfaces were also presented slanted at left or right at 60 deg

which acts to approximately double the vertical frequency in the

image. Consequently, the frequencies in the image of the slanted

6 cpd iso-frequency plaid become 6 cpd horizontal and 12 cpd

vertical (Figure 2b) and the frequencies in the image of the 6 cpd

horizontal and 3 cpd vertical plaid become approximately equal at

6 cpd (Figure 2d). To test whether suppression is a function of the

similarity of frequencies between the test and mask, or of the

salience of the mask, we needed to select frequencies from the

small set that are highly visible, effectively convey surface slant,

and are significantly less salient when doubled. We used

frequencies of 4 and 6 cpd which satisfy these requirements by

being just past the peak of the human CSF.

Contrast thresholds for the horizontal grating were measured

using the interleaved staircase procedures. Observers ran four

different sessions, three times each: one baseline session for the

horizontal grating alone at fronto-parallel, rightward slanted by

60 deg and leftward slanted by 60 deg orientations, one session for

fronto-parallel plaids and two sessions for slanted plaids. The

slanted sessions were blocked in order to contain both types of

plaids and both types of slants within each session, while keeping

the length of sessions similar to the sessions testing the fronto-

parallel stimuli.

5. Observers
One of the authors and two experienced but uninformed

observers participated in this study. All had normal or corrected-

to-normal visual acuity.

Results

1. Experiment 1: Orientation Flow Visibility as a Function
of Surface Slant

Contrast thresholds of the horizontal components in the

different conditions are shown for the three observers in

Figure 1b in separate columns. The panels in the top row plot

contrast thresholds of the horizontal grating alone (filled circles), in

the presence of the vertical grating in the h–v plaid (open

triangles), and in the presence of the seven non-horizontal

components in the octotropic plaid (filled squares) as a function

of surface slant. The axis along the top of each panel represents the

frequency of the vertical grating component as it changes with

surface slant relative to the frequency of the test. Thresholds of the

grating alone (filled circles) are relatively unchanged by surface

slant, reflecting the fact that the spatial frequency of this

component is relatively unchanged. The presence of the vertical

Figure 2. Suppression of the test grating from iso-frequency vs. unequal frequency masks. Top: An iso-frequency plaid (a), and an
unequal frequency plaid (c) consisting of a horizontal grating and a vertical grating at half the frequency. At slants of 60 deg, the components in the
image of the iso-frequency plaid are unequal in frequency (b), and the components in the image of the unequal frequency plaid are equal in
frequency (d). Bottom: Suppression factors averaged across three observers (left: 4 cpd test frequency, right: 6 cpd test frequency). Error bars
represent one standard error of the mean. Black bars represent suppression factors in the fronto-parallel conditions, and grey bars represent
suppression factors in the slanted conditions.
doi:10.1371/journal.pone.0008333.g002
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grating (open triangles) increases thresholds for all surface slants

(except for the steepest slants for observer DT), reflecting an

overall decrease in visibility of the horizontal component.

Thresholds increased even more in the presence of the seven

non-horizontal components of the octotropic plaid (filled squares).

We quantified the suppression induced by non-horizontal

components by dividing thresholds of the horizontal grating in

the presence of other components by thresholds in the absence of

other components ([16]). The suppression factors for the simple

and octotropic plaids are plotted as functions of surface slant, with

solid and dashed lines respectively, in the bottom panels of

Figure 1b. Suppression for both patterns decreases as surface slant

increases, with substantially greater and steeper changes in

suppression for the octotropic plaid.

We have previously shown that perceived orientation flows

determine the perception of 3-D shape from texture ([3,5,19,20]).

3-D shape is not perceived when the flows are physically present if

they are masked by other components (see [5], Figure 10). The

results in Figure 1 indicate that orientation flows are more visible

for the h–v than the octotropic plaid at shallow slants, but equally

visible at steep slants. Hence, slants should be easier to see for the

h–v plaid than the octotropic plaid at shallow angles, but the two

should be equally perceptible at steep angles. This prediction is

borne out in Figure 1 where the orientation flows and thus slants

are easier to see in the h–v plaid than the octotropic plaid at

640 deg, but are equally visible for the two plaids at 670 deg.

2. Experiment 2: Frequency-Selectivity of
Cross-Orientation Suppression

It is clear from the results in Figure 1 that contrast thresholds

are raised by orthogonal masks, which is a signature of COS. Since

the frequencies in the fronto-parallel plane were 3 cpd which is

near the peak of the human CSF, the question remains whether

the peak suppression is a function of the similarity of frequencies

between the test and mask, or of the salience of the mask.

The four conditions of Experiment 2 provided two independent

comparisons of these hypotheses. In Figure 2 (bottom), mean

suppression factors averaged across the three observers are plotted

for all conditions for the 4 cpd horizontal grating (left) and the

6 cpd horizontal grating (right). Error bars represent one standard

error of the mean. Data in each panel are plotted in the same

order from left to right as the four stimulus conditions shown

above. First, the similarity hypothesis predicts that thresholds

should be higher in the iso-frequency fronto-parallel plaid

(Figure 2a) than for the unequal frequency fronto-parallel plaid

(Figure 2c), whereas the salience hypothesis predicts the opposite.

Thresholds for both the 4 cpd and 6 cpd test gratings were raised

more by the iso-frequency mask than the more salient unequal

frequency mask. Second, the increase in suppression for the 4 cpd

condition when the unequal frequency plaid (Figure 2c) is slanted

(leading to an iso-frequency image pattern, Figure 2d) also

supports the similarity hypothesis over the salience hypothesis.

In addition, in comparing the two slanted plaids, suppression was

greater when the image pattern was iso-frequency (Figure 2d) than

when the surface pattern was iso-frequency (Figure 2b). Since we

expected suppression to decrease with increasing slant for the iso-

frequency condition and increase with slant for the unequal

frequency condition, we tested for interaction between the

frequency conditions and the slant conditions in a 262 ANOVA.

The interaction was in the correct direction for both spatial

frequencies, and statistically significant at the .05 level for the

4 cpd test (F(1,12) = 23.12, p = .0406) but not for the 6 cpd test

(F(1,12) = 12.00, p = .0742).

These results indicate that the COS from the vertical grating is

greatest when the frequency in the projected image is equal to that

of the horizontal grating, even when the frequency is one to which

we are less sensitive. Previous measurements of the spatial

frequency tuning of COS ([21]) showed a decrease in masking

for a 4 cpd test when the mask frequency increased from 4 to

8 cpd, but did not determine whether spatial-frequency mismatch

or a decrease in mask saliency was the cause.

3. Feed-Forward Models of Cross-Orientation
Suppression

COS is well-documented in cortical area V1, the first site in the

visual pathway containing orientation tuned cells. COS has been

attributed to compressive contrast nonlinearities in LGN ([22,23]),

but a cortical component has also been revealed ([24]). Although

several electrophysiological studies examining the frequency selec-

tivity of COS suggest that suppression mechanisms are broadly

tuned ([11,25,26]), it is unclear whether this kind of tuning plays out

psychophysically. It would be remarkable if the facilitation of 3-D

shape perception occurs automatically through the neural processes

that lead to COS, so to ascertain its locus, we have explored the

possibility of frequency selectivity in an LGN based model.

Although intra-cortical inhibition was the original suggestion for

COS, the fact that suppression is not reduced by prior monocular

or binocular adaptation to the masking stimulus, that suppression

is robust for masks at temporal frequencies beyond the limits of

cortical neurons, and that COS has an early onset led to the

suggestion that the suppression results from the depression of

thalamo-cortical synapses ([27,15,28]). More recent papers

quantifying the fast recovery times of COS ([22]) and the

suppression of both synaptic inhibition and excitation by

orthogonal masks ([23]) challenge the notion of synaptic

depression. Instead these models suggest that COS results from

contrast saturation and rectifying nonlinearities in the LGN, and

expansive spike threshold nonlinearities in the cortex ([22,23]).

To test the frequency-selectivity of COS in the models of Li et

al. ([22]) and Priebe and Ferster ([23]), we computed cortical

responses to a vertical test grating in the presence of superimposed

horizontal masks of the same or different frequency. The model

simulates responses of a simple cell as determined by excitation of

LGN cells tuned to the spatial frequency of the test grating

(Figure 3). The receptive field of each ON-center cell is modeled as

the difference of two Gaussians:

RF~
1ffiffiffiffiffiffiffiffiffiffiffiffi

2psc
2

p exp {
x2

2sc
2

� �
{

1ffiffiffiffiffiffiffiffiffiffiffiffi
2pss

2
p exp {

x2

2ss
2

� �
ð1Þ

where sc is the variance of the central Gaussian, and ss is the

variance of the surround Gaussian. OFF-center receptive fields

were modeled as negatives of ON-center receptive fields. Linear

outputs of LGN cells at each location of the stimulus were

approximated by convolving ON- and OFF-center receptive fields

with the stimulus (either a single vertical grating, or a vertical

grating added to a horizontal mask). The outputs were then

subjected to a compressive contrast nonlinearity in the LGN

([22,23]) of the form:

R~1{ exp
{abs Lð Þ

k

� �
ð2Þ

where R is the compressed response, L is the linear response, and

the value of k dictates the strength of the compression (greater

compression for greater values).

COS and 3D Shape Perception

PLoS ONE | www.plosone.org 4 December 2009 | Volume 4 | Issue 12 | e8333



Excitation and inhibition in the cortical simple cell receptive

field has been modeled by summed responses of LGN cells in

‘‘push-pull’’ form ([22]). Excitation from ON-center LGN cells

and inhibition from OFF-center LGN cells form an ON sub-

region of the simple cell receptive field, while excitation from

OFF-center LGN cells and inhibition from ON-center LGN cells

form an OFF sub-region of the simple cell. Summed excitatory

and inhibitory responses are then squared, representing an

accelerating cortical spike-voltage non-linearity. (A range of

different expansive nonlinearities yielded the same qualitative

patterns in our simulation.) This model simple cell gives null

responses to horizontal (mask) gratings in isolation.

Responses of the model to the test grating plus the mask were

computed for masks that were the same frequency as the test, or

half, twice, and three times the frequency of the test. We defined

response suppression as the response to the grating alone divided

by the response to the grating plus the mask.

The graph in the bottom of Figure 3 plots response suppression

as a function of the frequency of the orthogonal mask relative to

the frequency of the test. The points at zero mask frequency

represent model responses to the vertical test alone. To test the

generality of the simulations, we implemented two different center-

surround variance ratios and two different compressive nonlinea-

rities. Each of the four curves represents one combination of these

variables: solid lines represent conditions in which the variance of

the surround of the LGN cells is twice the variance of the center,

dashed lines represent conditions in which the variance of the

surround is three times the variance of the center. Square symbols

represent NL1 conditions in which k = e in the compressive

nonlinearity (Equation 2), and the triangles represent the more

compressive NL2 conditions in which k = max(abs(L)). All

combinations of receptive fields and nonlinearities lead to

frequency selectivity, with suppression greatest when the frequency

of the mask matches that of the test. Increasing the surround

variance acts to slightly broaden the frequency tuning, and

increasing the strength of the compression acts to increase the

overall suppression and sharpen the frequency tuning. The

magnitudes of suppression reported in Experiment 1 fell between

the suppression values for the two model nonlinearities.

Discussion

The suggested roles of COS in visual encoding have included

orientation tuning ([29,10,30]), contrast gain control

([31,32,11,33,34]), and redundancy reduction in the coding of

natural images ([35,36,37]). Here we postulate a potential role for

COS in the decoding of 3-D slant. We have shown that when

textured surfaces are slanted, the release of COS makes the critical

orientation flows more visible, which correlates with better

perception of 3-D slant. We have shown that COS is frequency

specific, and that this specificity can arise in simple feed-forward

models of COS. To our knowledge, feed-forward explanations of

frequency selectivity of COS have not been suggested previously.

The LGN models of COS were formulated on the basis of cat

Figure 3. Response suppression in a feed-forward model of cross-orientation suppression as a function of mask frequency. Top:
Responses of On- and Off-center LGN cells were convolved with the stimulus, passed through a compressive non-linearity, summed in excitatory and
inhibitory push-pull form, and passed through an expansive cortical spike threshold non-linearity. Bottom: Response suppression of the model
(response to the test grating alone divided by the response to the test plus the orthogonal mask) as a function of the relative frequency of the
orthogonal mask. Response suppression was frequency selective for two different center-surround variance ratios (ss = 2sc plotted in solid lines and
ss = 3sc plotted in dashed lines) and two different compressive nonlinearities (k = e in Equation 2 for NL1 plotted in squares, and k = max(abs(L)) in
Equation 2 for NL2 plotted in triangles).
doi:10.1371/journal.pone.0008333.g003
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physiology, where almost all cell response functions are compres-

sive as a function of contrast. In primate LGN, M-cells are

compressive, but P-cells are fairly linear. Our model thus provides

the M-cell component of COS. Since V1 cells get input from P

and M-cells, some component of COS involves cortical interac-

tions ([24]).

Purpura et al. ([38]) examined whether neurons in V1 and V2

facilitate the extraction of 2-D orientation patterns for the

perception of 3-D shape. Of the 29 neurons in macaque V1 and

V2 that were isolated from tetrode recordings, flat plaids induced

significant suppression in 78% of the neurons compared to optimal

single gratings. Suppression was significantly reduced in 45% of

the neurons for plaids slanted along or orthogonal to the optimal

orientation. In addition, 28% of V1 and 56% of V2 neurons

showed enhanced responses to orientation flows per se, indicating

that asymmetries may be more prominent in the 2-D structure of

V2 receptive fields. Since COS and surround suppression

significantly reduce responses to patterns in natural scenes, stimuli

that undermine these sources of suppression may allow V1/V2 to

mark areas that have a higher probability of containing 3-D shape.

In particular, release from cross-orientation suppression serves to

enhance the visibility of orientation flows that are the keys to

decoding 3-D shapes as signaled by texture ([3,2,5]), shading

([39]), and specular reflection ([40]).
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